Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 14(4)2022 04 14.
Article in English | MEDLINE | ID: covidwho-1792420

ABSTRACT

Critically ill COVID-19 patients are at high risk for venous thromboembolism (VTE), namely deep vein thrombosis (DVT) and/or pulmonary embolism (PE), and death. The optimal anticoagulation strategy in critically ill patients with COVID-19 remains unknown. This study investigated the ante mortem incidence as well as postmortem prevalence of VTE, the factors predictive of VTE, and the impact of changed anticoagulation practice on patient survival. We conducted a consecutive retrospective analysis of postmortem COVID-19 (n = 64) and non-COVID-19 (n = 67) patients, as well as ante mortem COVID-19 (n = 170) patients admitted to the University Medical Center Hamburg-Eppendorf (Hamburg, Germany). Baseline patient characteristics, parameters related to the intensive care unit (ICU) stay, and the clinical and autoptic presence of VTE were evaluated and statistically compared between groups. The occurrence of VTE in critically ill COVID-19 patients is confirmed in both ante mortem (17%) and postmortem (38%) cohorts. Accordingly, comparing the postmortem prevalence of VTE between age- and sex-matched COVID-19 (43%) and non-COVID-19 (0%) cohorts, we found the statistically significant increased prevalence of VTE in critically ill COVID-19 cohorts (p = 0.001). A change in anticoagulation practice was associated with the statistically significant prolongation of survival time (HR: 2.55, [95% CI 1.41-4.61], p = 0.01) and a reduction in VTE occurrence (54% vs. 25%; p = 0.02). In summary, in the autopsy as well as clinical cohort of critically ill patients with COVID-19, we found that VTE was a frequent finding. A change in anticoagulation practice was associated with a statistically significantly prolonged survival time.


Subject(s)
COVID-19 , Venous Thromboembolism , Anticoagulants/therapeutic use , Autopsy , COVID-19/epidemiology , Critical Illness , Humans , Retrospective Studies , Risk Factors , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology
2.
Biosens Bioelectron ; 192: 113536, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1330665

ABSTRACT

The ongoing COVID-19 pandemic stresses the need for widely available diagnostic tests for the presence of SARS-CoV-2 in individuals. Due to the limited availability of vaccines, diagnostic assays which are cheap, easy-to-use at the point-of-need, reliable and fast, are currently the only way to control the pandemic situation. Here we present a diagnostic assay for the detection of pathogen-specific nucleic acids based on changes of the magnetic response of magnetic nanoparticles: The target-mediated hybridization of modified nanoparticles leads to an increase in the hydrodynamic radius. This resulting change in the magnetic behaviour in an ac magnetic field can be measured via magnetic particle spectroscopy (MPS), providing a viable tool for the accurate detection of target nucleic acids. In this work we show that single stranded DNA can be detected in a concentration-dependent manner by these means. In addition to detecting synthetic DNA with an arbitrary sequence in a concentration down to 500 pM, we show that RNA and SARS-CoV-2-specific DNA as well as saliva as a sample medium can be used for an accurate assay. These proof-of-principle experiments show the potential of MPS based assays for the reliable and fast diagnostics of pathogens like SARS-CoV-2 in a point-of-need fashion without the need of complex sample preparation.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , Humans , Magnetic Phenomena , Pandemics , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity , Spectrum Analysis
3.
ACS Sens ; 6(3): 976-984, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1047925

ABSTRACT

The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global medical systems and economies and rules our daily living life. Controlling the outbreak of SARS-CoV-2 has become one of the most important and urgent strategies throughout the whole world. As of October 2020, there have not yet been any medicines or therapies to be effective against SARS-CoV-2. Thus, rapid and sensitive diagnostics is the most important measures to control the outbreak of SARS-CoV-2. Homogeneous biosensing based on magnetic nanoparticles (MNPs) is one of the most promising approaches for rapid and highly sensitive detection of biomolecules. This paper proposes an approach for rapid and sensitive detection of SARS-CoV-2 with functionalized MNPs via the measurement of their magnetic response in an ac magnetic field. For proof of concept, mimic SARS-CoV-2 consisting of spike proteins and polystyrene beads are used for experiments. Experimental results demonstrate that the proposed approach allows the rapid detection of mimic SARS-CoV-2 with a limit of detection of 0.084 nM (5.9 fmole). The proposed approach has great potential for designing a low-cost and point-of-care device for rapid and sensitive diagnostics of SARS-CoV-2.


Subject(s)
Antibodies, Monoclonal/chemistry , Magnetite Nanoparticles/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Monoclonal/immunology , Biosensing Techniques , Magnetic Phenomena , Polystyrenes/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL